]> vault307.fbx.one Git - micorpython_ir.git/blob - ir_tx/__init__.py
5f0071871abfab5e7c6b3efa1393a24cf204ef04
[micorpython_ir.git] / ir_tx / __init__.py
1 # __init__.py Nonblocking IR blaster
2 # Runs on Pyboard D or Pyboard 1.x (not Pyboard Lite) and ESP32
3
4 # Released under the MIT License (MIT). See LICENSE.
5
6 # Copyright (c) 2020 Peter Hinch
7 from sys import platform
8 ESP32 = platform == 'esp32' # Loboris not supported owing to RMT
9 if ESP32:
10 from machine import Pin, PWM
11 from esp32 import RMT
12 else:
13 from pyb import Pin, Timer # Pyboard does not support machine.PWM
14
15 from micropython import const
16 from array import array
17 import micropython
18
19 # micropython.alloc_emergency_exception_buf(100)
20
21 # Duty ratio in carrier off state.
22 _SPACE = const(0)
23 # On ESP32 gate hardware design is led_on = rmt and carrier
24
25 # Shared by NEC
26 STOP = const(0) # End of data
27
28 # IR abstract base class. Array holds periods in μs between toggling 36/38KHz
29 # carrier on or off. Physical transmission occurs in an ISR context controlled
30 # by timer 2 and timer 5. See README.md for details of operation.
31 class IR:
32 active_high = True # Hardware turns IRLED on if pin goes high.
33
34 def __init__(self, pin, cfreq, asize, duty, verbose):
35 if not IR.active_high:
36 duty = 100 - duty
37 if ESP32:
38 self._pwm = PWM(pin[0]) # Continuous 36/38/40KHz carrier
39 self._pwm.deinit()
40 # ESP32: 0 <= duty <= 1023
41 self._pwm.init(freq=cfreq, duty=round(duty * 10.23))
42 self._rmt = RMT(0, pin=pin[1], clock_div=80) # 1μs resolution
43 else: # Pyboard
44 tim = Timer(2, freq=cfreq) # Timer 2/pin produces 36/38/40KHz carrier
45 self._ch = tim.channel(1, Timer.PWM, pin=pin)
46 self._ch.pulse_width_percent(_SPACE) # Turn off IR LED
47 # Pyboard: 0 <= pulse_width_percent <= 100
48 self._duty = duty
49 self._tim = Timer(5) # Timer 5 controls carrier on/off times
50 self._tcb = self._cb # Pre-allocate
51 self._arr = array('H', 0 for _ in range(asize)) # on/off times (μs)
52 self._mva = memoryview(self._arr)
53 # Subclass interface
54 self.verbose = verbose
55 self.carrier = False # Notional carrier state while encoding biphase
56 self.aptr = 0 # Index into array
57
58 def _cb(self, t): # T5 callback, generate a carrier mark or space
59 t.deinit()
60 p = self.aptr
61 v = self._arr[p]
62 if v == STOP:
63 self._ch.pulse_width_percent(_SPACE) # Turn off IR LED.
64 return
65 self._ch.pulse_width_percent(_SPACE if p & 1 else self._duty)
66 self._tim.init(prescaler=84, period=v, callback=self._tcb)
67 self.aptr += 1
68
69 # Public interface
70 # Before populating array, zero pointer, set notional carrier state (off).
71 def transmit(self, addr, data, toggle=0): # NEC: toggle is unused
72 self.aptr = 0 # Inital conditions for tx: index into array
73 self.carrier = False
74 self.tx(addr, data, toggle) # Subclass populates ._arr
75 self.trigger() # Initiate transmission
76
77 # Subclass interface
78 def trigger(self): # Used by NEC to initiate a repeat frame
79 if ESP32:
80 self._rmt.write_pulses(tuple(self._mva[0 : self.aptr]), start = 1)
81 else:
82 self.append(STOP)
83 self.aptr = 0 # Reset pointer
84 self._cb(self._tim) # Initiate physical transmission.
85
86 def append(self, *times): # Append one or more time peiods to ._arr
87 for t in times:
88 self._arr[self.aptr] = t
89 self.aptr += 1
90 self.carrier = not self.carrier # Keep track of carrier state
91 self.verbose and print('append', t, 'carrier', self.carrier)
92
93 def add(self, t): # Increase last time value (for biphase)
94 assert t > 0
95 self.verbose and print('add', t)
96 # .carrier unaffected
97 self._arr[self.aptr - 1] += t