--- /dev/null
+# ir_rx.py Decoder for IR remote control using synchronous code
+# Supports RC-5 RC-6 mode 0 and NEC protocols.
+# For a remote using NEC see https://www.adafruit.com/products/389
+
+# Author: Peter Hinch
+# Copyright Peter Hinch 2020 Released under the MIT license
+
+from sys import platform
+from micropython import const
+from machine import Timer
+from array import array
+from utime import ticks_us, ticks_diff
+
+if platform == 'pyboard':
+ from pyb import Pin, ExtInt
+else:
+ from machine import Pin
+
+ESP32 = platform == 'esp32' or platform == 'esp32_LoBo'
+
+# Save RAM
+# from micropython import alloc_emergency_exception_buf
+# alloc_emergency_exception_buf(100)
+
+# Result codes (accessible to application)
+# Repeat button code
+REPEAT = -1
+# Error codes
+BADSTART = -2
+BADBLOCK = -3
+BADREP = -4
+OVERRUN = -5
+BADDATA = -6
+BADADDR = -7
+
+
+# On 1st edge start a block timer. While the timer is running, record the time
+# of each edge. When the timer times out decode the data. Duration must exceed
+# the worst case block transmission time, but be less than the interval between
+# a block start and a repeat code start (~108ms depending on protocol)
+
+class IR_RX():
+ def __init__(self, pin, nedges, tblock, callback, *args): # Optional args for callback
+ self._nedges = nedges
+ self._tblock = tblock
+ self.callback = callback
+ self.args = args
+
+ self._times = array('i', (0 for _ in range(nedges + 1))) # +1 for overrun
+ if platform == 'pyboard':
+ ExtInt(pin, ExtInt.IRQ_RISING_FALLING, Pin.PULL_NONE, self._cb_pin)
+ elif ESP32:
+ pin.irq(handler = self._cb_pin, trigger = (Pin.IRQ_FALLING | Pin.IRQ_RISING))
+ else:
+ pin.irq(handler = self._cb_pin, trigger = (Pin.IRQ_FALLING | Pin.IRQ_RISING), hard = True)
+ self.edge = 0
+ self.tim = Timer(-1) # Sofware timer
+ self.cb = self._decode
+
+
+ # Pin interrupt. Save time of each edge for later decode.
+ def _cb_pin(self, line):
+ t = ticks_us()
+ # On overrun ignore pulses until software timer times out
+ if self.edge <= self._nedges: # Allow 1 extra pulse to record overrun
+ if not self.edge: # First edge received
+ self.tim.init(period=self._tblock , mode=Timer.ONE_SHOT, callback=self.cb)
+ self._times[self.edge] = t
+ self.edge += 1
+
+class NEC_IR(IR_RX):
+ def __init__(self, pin, callback, extended, *args):
+ # Block lasts <= 80ms and has 68 edges
+ tblock = 80 if extended else 73 # Allow for some tx tolerance (?)
+ super().__init__(pin, 68, tblock, callback, *args)
+ self._extended = extended
+ self._addr = 0
+
+ def _decode(self, _):
+ overrun = self.edge > 68
+ val = OVERRUN if overrun else BADSTART
+ if not overrun:
+ width = ticks_diff(self._times[1], self._times[0])
+ if width > 4000: # 9ms leading mark for all valid data
+ width = ticks_diff(self._times[2], self._times[1])
+ if width > 3000: # 4.5ms space for normal data
+ if self.edge < 68:
+ # Haven't received the correct number of edges
+ val = BADBLOCK
+ else:
+ # Time spaces only (marks are always 562.5µs)
+ # Space is 1.6875ms (1) or 562.5µs (0)
+ # Skip last bit which is always 1
+ val = 0
+ for edge in range(3, 68 - 2, 2):
+ val >>= 1
+ if ticks_diff(self._times[edge + 1], self._times[edge]) > 1120:
+ val |= 0x80000000
+ elif width > 1700: # 2.5ms space for a repeat code. Should have exactly 4 edges.
+ val = REPEAT if self.edge == 4 else BADREP
+ addr = 0
+ if val >= 0: # validate. Byte layout of val ~cmd cmd ~addr addr
+ addr = val & 0xff
+ cmd = (val >> 16) & 0xff
+ if addr == ((val >> 8) ^ 0xff) & 0xff: # 8 bit address OK
+ val = cmd if cmd == (val >> 24) ^ 0xff else BADDATA
+ self._addr = addr
+ else:
+ addr |= val & 0xff00 # pass assumed 16 bit address to callback
+ if self._extended:
+ val = cmd if cmd == (val >> 24) ^ 0xff else BADDATA
+ self._addr = addr
+ else:
+ val = BADADDR
+ if val == REPEAT:
+ addr = self._addr # Last valid addresss
+ self.edge = 0 # Set up for new data burst and run user callback
+ self.callback(val, addr, *self.args)
+
+class RC5_IR(IR_RX):
+ def __init__(self, pin, callback, *args):
+ # Block lasts <= 30ms and has <= 28 edges
+ super().__init__(pin, 28, 30, callback, *args)
+
+ def _decode(self, _):
+ try:
+ nedges = self.edge # No. of edges detected
+ if not 14 <= nedges <= 28:
+ raise RuntimeError(OVERRUN if nedges > 28 else BADSTART)
+ # Regenerate bitstream
+ bits = 0
+ bit = 1
+ for x in range(1, nedges):
+ width = ticks_diff(self._times[x], self._times[x - 1])
+ if not 500 < width < 2000:
+ raise RuntimeError(BADBLOCK)
+ for _ in range(1 if width < 1334 else 2):
+ bits <<= 1
+ bits |= bit
+ bit ^= 1
+ #print(bin(bits)) # Matches inverted scope waveform
+ # Decode Manchester code
+ x = 30
+ while not bits >> x:
+ x -= 1
+ m0 = 1 << x # Mask MS two bits (always 01)
+ m1 = m0 << 1
+ v = 0 # 14 bit bitstream
+ for _ in range(14):
+ v <<= 1
+ b0 = (bits & m0) > 0
+ b1 = (bits & m1) > 0
+ if b0 == b1:
+ raise RuntimeError(BADBLOCK)
+ v |= b0
+ m0 >>= 2
+ m1 >>= 2
+ # Split into fields (val, addr, ctrl)
+ val = (v & 0x3f) | (0x40 if ((v >> 12) & 1) else 0)
+ addr = (v >> 6) & 0x1f
+ ctrl = (v >> 11) & 1
+
+ except RuntimeError as e:
+ val, addr, ctrl = e.args[0], 0, 0
+ self.edge = 0 # Set up for new data burst and run user callback
+ self.callback(val, addr, ctrl, *self.args)
+
+class RC6_M0(IR_RX):
+ # Even on Pyboard D these 444us nominal pulses can be recorded as up to 705us
+ hdr = ((1800, 4000), (593, 1333), (222, 750), (593, 1333), (222, 750), (222, 750), (222, 750), (222, 750))
+ def __init__(self, pin, callback, *args):
+ # Block lasts 23ms nominal and has <=44 edges
+ super().__init__(pin, 44, 30, callback, *args)
+
+ def _decode(self, _):
+ try:
+ nedges = self.edge # No. of edges detected
+ if not 22 <= nedges <= 44:
+ raise RuntimeError(OVERRUN if nedges > 28 else BADSTART)
+ for x, lims in enumerate(self.hdr):
+ width = ticks_diff(self._times[x + 1], self._times[x])
+ if not (lims[0] < width < lims[1]):
+ print('Bad start', x, width, lims)
+ raise RuntimeError(BADSTART)
+ x += 1
+ width = ticks_diff(self._times[x + 1], self._times[x])
+ ctrl = width > 889 # Long bit
+ start = x + 2 # Skip 2nd long bit
+
+ # Regenerate bitstream
+ bits = 0
+ bit = 0
+ for x in range(start, nedges):
+ width = ticks_diff(self._times[x], self._times[x - 1])
+ if not 222 < width < 1333:
+ print('Width', width)
+ raise RuntimeError(BADBLOCK)
+ for _ in range(1 if width < 666 else 2):
+ bits <<= 1
+ bits |= bit
+ bit ^= 1
+ print(bin(bits), len(bin(bits)) - 2)
+
+ # Decode Manchester code
+ x = 32
+ while not bits >> x:
+ x -= 1
+ m0 = 1 << (x - 1)
+ m1 = 1 << x # MSB of pair
+ v = 0 # 16 bit bitstream
+ for _ in range(16):
+ v <<= 1
+ b0 = (bits & m0) > 0
+ b1 = (bits & m1) > 0
+ #print(int(b1), int(b0))
+ if b0 == b1:
+ raise RuntimeError(BADBLOCK)
+ v |= b0
+ m0 >>= 2
+ m1 >>= 2
+ # Split into fields (val, addr)
+ val = v & 0xff
+ addr = (v >> 8) & 0xff
+
+ except RuntimeError as e:
+ val, addr, ctrl = e.args[0], 0, 0
+ self.edge = 0 # Set up for new data burst and run user callback
+ self.callback(val, addr, ctrl, *self.args)
--- /dev/null
+# ir_rx_test.py Test program for IR remote control decoder arem.py
+# Supports Pyboard and ESP8266
+
+# Author: Peter Hinch
+# Copyright Peter Hinch 2020 Released under the MIT license
+
+# Run this to characterise a remote.
+
+from sys import platform
+import time
+from machine import Pin, freq
+from arem import *
+
+ESP32 = platform == 'esp32' or platform == 'esp32_LoBo'
+
+if platform == 'pyboard':
+ p = Pin('X3', Pin.IN)
+elif platform == 'esp8266':
+ freq(160000000)
+ p = Pin(13, Pin.IN)
+elif ESP32:
+ p = Pin(23, Pin.IN)
+
+errors = {BADSTART : 'Invalid start pulse', BADBLOCK : 'Error: bad block',
+ BADREP : 'Error: repeat', OVERRUN : 'Error: overrun',
+ BADDATA : 'Error: invalid data', BADADDR : 'Error: invalid address'}
+
+def cb(data, addr, ctrl):
+ if data == REPEAT: # NEC protocol sends repeat codes.
+ print('Repeat code.')
+ elif data >= 0:
+ print('Data {:03x} Addr {:03x} Ctrl {:01x}'.format(data, addr, ctrl))
+ else:
+ print('{} Address: {}'.format(errors[data], hex(addr)))
+
+
+s = '''Test for IR receiver. Run:
+ir_tx_test.test() for NEC protocol,
+ir_tx_test.test(5) for Philips RC-5 protocol,
+ir_tx_test.test(6) for RC6 mode 0.
+
+Background processing means REPL prompt reappears.
+Hit ctrl-D to stop (soft reset).'''
+
+print(s)
+
+def test(proto=0):
+ if proto == 0:
+ ir = NEC_IR(p, cb, True, 0) # Extended mode, dummy ctrl arg for callback
+ elif proto == 5:
+ ir = RC5_IR(p, cb)
+ elif proto == 6:
+ ir = RC6_M0(p, cb)
+ # A real application would do something here...
+ #while True:
+ #time.sleep(5)
+ #print('running')
--- /dev/null
+# ir_tx.py Nonblocking IR blaster
+# Runs on Pyboard D or Pyboard 1.x only (not Pyboard Lite)
+
+# Released under the MIT License (MIT). See LICENSE.
+
+# Copyright (c) 2020 Peter Hinch
+
+from pyb import Pin, Timer
+from time import sleep_us, sleep
+from micropython import const
+from array import array
+import micropython
+
+# micropython.alloc_emergency_exception_buf(100)
+
+# Common
+_SPACE = const(0) # Or 100. Depends on wiring: 0 assumes logic 0 turns IR off.
+_STOP = const(0) # End of data
+# NEC
+_TBURST = const(563)
+_T_ONE = const(1687)
+# RC5
+_T_RC5 = const(889) # Time for pulse of carrier
+# RC6_M0
+_T_RC6 = const(444)
+_T2_RC6 = const(889)
+
+# IR abstract base class. Array holds periods in μs between toggling 36/38KHz
+# carrier on or off.
+# Subclass is responsible for populating .arr and initiating transmission.
+# Operation is in two phases: .transmit populates .arr with times in μs, then
+# calls .start to initiate physical transmission.
+class IR:
+
+ def __init__(self, pin, freq, asize, duty):
+ tim = Timer(2, freq=freq)
+ self._ch = tim.channel(1, Timer.PWM, pin=pin)
+ self._ch.pulse_width_percent(_SPACE)
+ self.duty = duty
+ self.arr = array('H', 0 for _ in range(asize))
+ self._tim = Timer(5)
+ self._tcb = self._cb
+ self.pretrans()
+
+ # Before populating array, zero pointer, set notional carrier state (off).
+ def pretrans(self):
+ self.aptr = 0 # Index into array
+ self.carrier = False
+
+ def start(self):
+ self.aptr = 0 # Reset pointer and initiate TX.
+ self._cb(self._tim)
+
+ def _cb(self, t):
+ t.deinit()
+ p = self.aptr
+ v = self.arr[p]
+ if v == _STOP:
+ self._ch.pulse_width_percent(_SPACE) # Turn off IR LED.
+ return
+ self._ch.pulse_width_percent(_SPACE if p & 1 else self.duty)
+ self._tim.init(prescaler=84, period=v, callback=self._tcb)
+ self.aptr += 1
+
+ def append(self, *times): # Append one or more time peiods to .arr
+ for t in times:
+ self.arr[self.aptr] = t
+ self.aptr += 1
+ self.carrier = not self.carrier # Keep track of carrier state
+ print('append', t, 'carrier', self.carrier)
+
+ def add(self, t): # Increase last time value
+ print('add', t)
+ self.arr[self.aptr - 1] += t # Carrier unaffected
+
+# NEC protocol
+class NEC(IR):
+
+ def __init__(self, pin, freq=38000): # NEC specifies 38KHz
+ super().__init__(pin, freq, 68, 50)
+
+ def _bit(self, b):
+ self.append(_TBURST, _T_ONE if b else _TBURST)
+
+ def transmit(self, addr, data, _=0): # Ignore toggle if passed
+ self.pretrans() # Set initial conditions
+ self.append(9000, 4500)
+ if addr < 256: # Short address: append complement
+ addr |= ((addr ^ 0xff) << 8)
+ for x in range(16):
+ self._bit(addr & 1)
+ addr >>= 1
+ data |= ((data ^ 0xff) << 8)
+ for x in range(16):
+ self._bit(data & 1)
+ data >>= 1
+ self.append(_TBURST, _STOP)
+ self.start()
+
+ def repeat(self):
+ self.aptr = 0
+ self.append(9000, 2250, _TBURST, _STOP)
+
+
+# Philips RC5 protocol
+class RC5(IR):
+
+ def __init__(self, pin, freq=36000):
+ super().__init__(pin, freq, 28, 30)
+
+ def transmit(self, addr, data, toggle):
+ self.pretrans() # Set initial conditions
+ d = (data & 0x3f) | ((addr & 0x1f) << 6) | ((data & 0x40) << 6) | ((toggle & 1) << 11)
+ print(bin(d))
+ mask = 0x2000
+ while mask:
+ if mask == 0x2000:
+ self.append(_T_RC5)
+ else:
+ bit = bool(d & mask)
+ if bit ^ self.carrier:
+ self.add(_T_RC5)
+ self.append(_T_RC5)
+ else:
+ self.append(_T_RC5, _T_RC5)
+ mask >>= 1
+ self.append(_STOP)
+ self.start()
+
+# Philips RC6 mode 0 protocol
+class RC6_M0(IR):
+
+ def __init__(self, pin, freq=36000):
+ super().__init__(pin, freq, 44, 30)
+
+ def transmit(self, addr, data, toggle):
+ self.pretrans() # Set initial conditions
+ # leader, 1, 0, 0, 0
+ self.append(2666, _T2_RC6, _T_RC6, _T2_RC6, _T_RC6, _T_RC6, _T_RC6, _T_RC6, _T_RC6)
+ # Append a single bit of twice duration
+ if toggle:
+ self.add(_T2_RC6)
+ self.append(_T2_RC6)
+ else:
+ self.append(_T2_RC6, _T2_RC6)
+ d = (data & 0xff) | ((addr & 0xff) << 8)
+ mask = 0x8000
+ print('toggle', toggle, self.carrier, bool(d & mask))
+ while mask:
+ bit = bool(d & mask)
+ if bit ^ self.carrier:
+ self.append(_T_RC6, _T_RC6)
+ else:
+ self.add(_T_RC6)
+ self.append(_T_RC6)
+ mask >>= 1
+ self.append(_STOP)
+ self.start()
--- /dev/null
+# ir_tx_test.py Test for nonblocking NEC/RC-5/RC-6 mode 0 IR blaster.
+
+# Released under the MIT License (MIT). See LICENSE.
+
+# Copyright (c) 2020 Peter Hinch
+
+# Implements a 2-button remote control on a Pyboard
+
+from pyb import Pin, LED
+import uasyncio as asyncio
+from aswitch import Switch, Delay_ms
+from ir_tx import NEC, RC5, RC6_M0
+
+loop = asyncio.get_event_loop()
+
+class Rbutton:
+ toggle = 1 # toggle is ignored in NEC mode
+ def __init__(self, irb, pin, addr, data, rep_code=False):
+ self.irb = irb
+ self.sw = Switch(pin)
+ self.addr = addr
+ self.data = data
+ self.rep_code = rep_code
+ self.sw.close_func(self.cfunc)
+ self.sw.open_func(self.ofunc)
+ self.tim = Delay_ms(self.repeat)
+
+ def cfunc(self): # Button push: send data
+ self.irb.transmit(self.addr, self.data, Rbutton.toggle)
+ # Auto repeat
+ self.tim.trigger(108)
+
+ def ofunc(self): # Button release: cancel repeat timer
+ self.tim.stop()
+ Rbutton.toggle ^= 1 # Toggle control
+
+ async def repeat(self):
+ await asyncio.sleep(0) # Let timer stop before retriggering
+ if not self.sw(): # Button is still pressed: retrigger
+ self.tim.trigger(108)
+ if self.rep_code:
+ self.irb.repeat() # NEC special case: send REPEAT code
+ else:
+ self.irb.transmit(self.addr, self.data, Rbutton.toggle)
+
+async def main(proto):
+ # Test uses a 38KHz carrier. Some Philips systems use 36KHz.
+ # If button is held down normal behaviour is to retransmit
+ # but most NEC models send a RPEAT code
+ rep_code = False # Don't care for RC-X. NEC protocol only.
+ pin = Pin('X1')
+ if not proto:
+ irb = NEC(pin) # Default NEC freq == 38KHz
+ # Option to send REPEAT code. Most remotes do this.
+ rep_code = True
+ elif proto == 5:
+ irb = RC5(pin, 38000)
+ elif proto == 6:
+ irb = RC6_M0(pin, 38000)
+
+ b = [] # Rbutton instances
+ b.append(Rbutton(irb, Pin('X3', Pin.IN, Pin.PULL_UP), 0x1, 0x7, rep_code))
+ b.append(Rbutton(irb, Pin('X4', Pin.IN, Pin.PULL_UP), 0x10, 0xb, rep_code))
+ led = LED(1)
+ while True:
+ await asyncio.sleep_ms(500) # Obligatory flashing LED.
+ led.toggle()
+
+s = '''Test for IR transmitter. Run:
+ir_tx_test.test() for NEC protocol
+ir_tx_test.test(5) for RC-5 protocol
+ir_tx_test.test(6) for RC-6 mode 0.
+
+Ground X3 to send addr 1 data 7
+Ground X4 to send addr 0x10 data 0x0b.'''
+print(s)
+
+def test(proto=0):
+ loop.run_until_complete(main(proto))